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ABSTRACT

Deep learning algorithms are increasingly being used to diagnose dysgraphia by concentrating 
on the issue of uneven handwriting characteristics, which is common among children in the early 
stage of basic learning of reading and writing skills. Convolutional Neural Network (CNN) is a 
deep learning model popular for classification tasks, including the dysgraphia detection process 
in assisting traditional diagnosis procedures. The CNN-based model is usually constructed 
by combining layers in the extraction network to capture the features of offline handwriting 
images before the classification network. However, concerns have been expressed regarding the 
limited study comparing the performance of the Directed Acyclic Graph (DAG) and Sequential 
Networks in handwriting-related studies in identifying dysgraphia. The proposed method was 
employed in this study to compare the two network structures utilized for feature extraction in 
classifying dysgraphia handwriting To eliminate this gap. Therefore, a new layer structure design 
in the Sequential and DAG networks was proposed to compare the performance of two feature 
extraction layers. The findings demonstrated that the DAG network outperforms the Sequential 
network with 1.75% higher accuracy in classification testing based on confusion matrix 
analysis. The study provides valuable insights into the efficiency of various network structures 
in recognizing inconsistencies identified in dysgraphia handwriting, underlining the need for 

additional research and improvement in this 
field. Subsequently, these findings highlight 
the necessity of deep learning approaches to 
advance dysgraphia identification and establish 
the framework for future research.
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INTRODUCTION 

Dysgraphia is a complex learning disability that affects language skills, including writing, 
spelling, and comprehension, and causes difficulties in a child’s academic and social life 
(Deuel, 1995). Writing skills are key abilities that children must develop during their 
school years. Dysgraphia children, on the other hand, suffer from handwriting difficulties 
and lack the writing skills that are expected for his or her age and cognitive level (Chung 
et al., 2020; Vlachos & Avramidis, 2020). Dysgraphia children’s handwriting products 
exhibit indications of inconsistent handwriting, improper letter size, reversed letter form, 
and corrected handwriting (Biotteau et al., 2019). Some scholars have also detected 
dysgraphia in children presented with spelling impairment (Šafárová et al., 2021; Vlachos 
& Avramidis, 2020) that affects writing skills, prohibiting children from writing words 
quickly and consistently. Table 1 presents examples of dysgraphia and normal handwriting 
images by children aged 7 to 12. 

Addressing dysgraphia and finding appropriate interventions are critical in increasing 
learning and ensuring success in education. Furthermore, traditional techniques of 
detecting dysgraphia rely primarily on subjective assessments, such as scoring tests and 
observations-based methods, which can be time-consuming, biased, and lacking objectivity 
(Dimauro et al., 2020). These constraints emphasize the need for more accurate and 
efficient dysgraphia detection systems. In recent years, computer-based approaches have 
emerged as a potential solution for dysgraphia detection. These approaches leverage various 
features and algorithms to analyze and interpret dysgraphia symptoms, such as inconsistent 
handwriting with redundant form, reversal and corrected letters (Vaivre-Douret et al., 2021). 
The accuracy and efficiency of dysgraphia detection are improved by computer-based 
methods, providing an objective and quantitative evaluation.

By automatically learning and extracting information from dysgraphia-related data, 
machine learning and deep learning algorithms have improved dysgraphia identification. 
These methods, particularly Convolutional Neural Networks (CNNs), have been performed 
in image classification tasks with various input images. CNNs comprise learnable layers 

Table 1
Dysgraphia and normal handwriting images by 
school-age children

Dysgraphia handwriting Normal handwriting

that extract hierarchical information from 
input images (Almisreb et al., 2022). The 
Directed Acyclic Graph Network (DAGN) 
and Sequential Network (SN) are two 
leading CNN architectures that could be 
implemented to extract features of layer 
network construction. SN is a simple 
network built on a single or multi-layer 
architecture with no shortcuts between 
the layers. In contrast, DAGN uses skip 
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connections, allowing direct connections between non-adjacent layers and improving 
gradient flow, resulting in improved classification performance. Moreover, by capturing 
specific features from dysgraphia handwriting, CNNs have shown the potential to be 
explored in detecting dysgraphia. Nonetheless, the performance comparison of DAGN 
and SN designs in dysgraphia detection is limited and current research lacks a detailed 
analysis of various network designs and their effects on classification. The same number 
of convolutional layers in the network could be used to better understand the advantages 
and disadvantages of DAGN and SN, which could help improve dysgraphia detection 
methods based on the performance of both networks.

This study compares the performance of DAGN and SN architectures for dysgraphia 
handwriting classification. By evaluating accuracy, precision, recall, and F1-score on a 
large dataset, it seeks to provide insights into the effectiveness of these network designs. 
The findings will advance dysgraphia detection methods and guide the development of 
more accurate deep-learning models for identifying dysgraphia based on handwriting 
characteristics. The proposed layer structure network could achieve significant output as a 
considerable network structure to integrate with another model in improving the dysgraphia 
detection approach. 

RELATED WORK

Numerous methods have been presented for detecting the presence of dysgraphia 
symptoms in children and adults using various input domains. The domain of online 
and offline handwriting was utilized and extracted to obtain an accurate diagnosis. Most 
researchers focus on accurate diagnosis by implementing a machine-learning algorithm. 
Online handwriting frequently extracts acceleration, pressure, and pen tilt, typically using 
additional instruments such as a tablet (Asselborn et al., 2020; Dankovicova et al., 2019; 
Kunhoth et al., 2023). In the meantime, digitized offline handwriting could be extracted 
as static features (letter shape, missing letters/words, uneven slanting, and inconsistent 
letter size) based on the output of handwriting on paper. Researchers have investigated 
both domains, exponentially demonstrating the potential of machine learning techniques 
for detecting dysgraphia symptoms.

More research in machine learning techniques has been conducted on classification 
algorithms and feature extraction. Machine learning algorithms, support vector machines 
(SVM), AdaBoost, and decision trees were applied to extracted features, and a dysgraphia 
diagnostic model was developed, as Kunhoth et al. (2023) demonstrated. From the study, 
the AdaBoost classifier has shown high accuracy with 80.8% accuracy, 1.3% more than the 
state-of-the-art method, similar to the research of Devillaine et al. (2021) that presented a 
machine learning algorithm-based pre-diagnosis tool for dysgraphia in France. From the 
study, Random Forest obtained the best accuracy score of 73.4% compared to Extra Trees 



2016 Pertanika J. Sci. & Technol. 32 (5): 2013 - 2032 (2024)

Siti Azura Ramlan, Iza Sazanita Isa, Muhammad Khusairi Osman, Ahmad Puad Ismail and Zainal Hisham Che Soh

and Multi-Layers Perceptron (MLP). In a similar perspective of the input domain, Sihwi et al. 
(2019) developed a Support Vector Machine (SVM) with several kernels, including Linear, 
Polynomial, and Radial Base Functions (RBF), to classify the collected data and identify 
dysgraphia. By handling the Synthetic Minority Over-sampling Technique (SMOTE) for 
unbalanced data, the RBF kernel produced the highest accuracy score of 82.51%. 

A study by Dankovicova et al. (2019) explored the application of various machine 
learning techniques, which are random forest, support vector machine, and adaptive 
boosting, to analyze and extract attributes from irregular handwriting and identify 
dysgraphia characteristics. While the study employs hyperparameter tuning, 3-fold 
stratified cross-validation, and normalized data to predict and assess the handwriting data, 
the principal component analysis has been used to visualize these attributes in a two-
dimensional space with a success rate of approximately 67%. The performance indicates 
a significant finding based on the various input domains and extracted features used in the 
previous study. It might be improved more accurately by aiding the diagnosis procedure 
with minimal consumption. The knowledge of machine learning has grown, and a more 
advanced concept known as deep learning promises high performance in computer vision. 

As deep learning research continues to grow, it offers the promise of additional 
revolutionary advancements in a variety of disciplines, including dysgraphia identification. 
Deep learning has shown outstanding performance in a variety of input domains used and 
across various disciplines. In computer vision, convolutional neural networks (CNNs) 
have achieved state-of-the-art performance in image classification, object detection, and 
image segmentation tasks (Chai et al., 2021). The effectiveness of CNNs in extracting 
feature spatial hierarchies has resulted in advances in image classification. Based on 
previous studies, several research studies have been conducted using the CNN-based 
model to classify dysgraphia and non-dysgraphia handwriting symptoms. A hybrid CNN-
LSTM Random Forest model has been performed in classifying handwriting characters 
for Parkinson’s patients (Masood et al., 2023). The combination of CNN and LSTM layer 
construction captured spatial and sequential information from the images, while Random 
Forest enhanced the classification performance. With different feature extraction methods, 
Devi and Kavya (2023) implemented a combined feature extraction formula of Kekre-
Discrete Cosine Transform with Deep Transfer Learning (K-DCT-DTL) to select prominent 
handwriting and geometrical features. Another CNN-based model has been presented by 
Vilasini et al. (2022), which was performed to identify and detect abnormal handwriting 
among children with learning disability. The CNN model and Vision Transformers (ViT) 
were utilized, and they have contributed to developing an efficient approach to dysgraphia 
detection research. 

A study by Ghouse et al. (2022) demonstrated the use of balancing parameters in the 
loss function to balance the class during training and eliminating the features to reduce 
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overfitting problems in classifying dysgraphia and non-dysgraphia by implementing 
Non-Discrimination Regularization in Rotational Region Convolutional Neural Network 
(NDR-R2CNN) model. By using graphic tablets to capture the dynamic features of letter 
writing, Zolna et al. (2019) developed a Recurrent Neural Network model (RNN) to 
identify children with dysgraphia. The sequential CNN-based model was explored and 
experimented with using letter handwriting images, and it was shown that the performance 
could be improved through different layer construction, such as the number of convolutional 
layers and different activation function layers (Ramlan et al., 2022). The experimental 
results predicted that the classification performance could increase if the convolutional 
layers increase. Prior research indicated that numerous implementations of input domain 
features, such as offline or online handwriting image features, have utilized CNN-based 
models to detect and identify dysgraphia in children and adults. 

CNN-based models have shown gradual growth in dysgraphia identification and 
classification based on handwriting features extracted during model training. Besides 
the model design, the datasets used in classifying dysgraphia handwriting are one of the 
crucial parameters to be considered. These datasets often include a diverse range of writing 
styles, ages, and severity levels of dysgraphia. Additionally, some studies employed data 
augmentation techniques to increase the size and diversity of the training dataset, such as 
rotation, scaling, and noise injection. The use of assistive tools such as a graphic tablet 
to preserve the dynamic features of handwriting aids in the performance of classification 
tasks, but it comes at a cost. Static features of handwriting products (offline handwriting) 
can supplement the limitations of employing online handwriting. However, functional 
CNN layer building is required to ensure that effective feature extraction can be done 
and classified appropriately. Most research studies focused on the performance accuracy 
of the model developed. However, limited research has investigated the impact of layer 
construction and hyperparameter comparison in handwriting image classification, especially 
in dysgraphia identification.    

To summarize, deep learning has emerged as a dominant framework in machine 
learning, adapting several fields and delivering outstanding performance in complex tasks. 
A CNN-based model is a focus model designed to identify dysgraphia symptoms and 
assist in dysgraphia diagnosis. Limited research has been conducted on a Directed Acyclic 
Graph (DAG) network to investigate the effect of the layer construction on classification 
performance. This study compares the performance of two models in classifying dysgraphia 
offline handwriting products, namely Sequential and DAG network designs. 

METHODOLOGY

An experimental study is used to achieve the research objective of comparing the 
performance between two different construction layers in extracting the features of 
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handwriting images. This methodology focuses on the novel network layer structures 
proposed for Sequential and DAG feature extraction networks. 

The overall experimental procedure depicted in Figure 1 is divided into three major 
stages: (1) preparing the dataset, (2) continuing network development, (3) and network 
analysis activities to complete the procedure. The first stage entails preprocessing the images 
using image processing techniques, including resizing and rotating to normalize the data. 
Then, the dataset is split into train and test portions to prepare it for input to the next stage.

The network architecture is developed in the second stage by considering the layer 
construction, activation function, and connectivity patterns. A model is developed in this 
second step, which could effectively learn and extract useful features from the input data. 
The hyperparameters, the adjustable parameters that control the network’s learning process, 
include learning rate, batch size, number of epochs, optimized function and regularization 
techniques. Tuning these hyperparameters is critical for optimizing network performance 

Figure 1. Overall experimental procedure for comparing networks performance of dysgraphia classification
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and generalization capability. The network model is trained and validated using the 
prepared dataset after the hyperparameters have been determined. The model learns from 
the training data during training and adjusts its parameters based on the set loss function 
and optimization method—the validation phase aids in monitoring the model’s performance 
on unseen data and preventing overfitting.

The model is then tested using a separate dataset in the third stage. This step assesses the 
network’s generalization capabilities, offering insight into how well it operates on unseen 
data. The test results evaluate the model’s performance and usefulness in addressing the 
target problem. When the execution is complete, the next step is to compare the network 
model’s performance against other models or benchmarks. Based on this comparison, 
decisions about the feasibility and effectiveness of the established network can be made, 
marking the end of the process. If the execution is incomplete, the workflow returns to 
the training and validation phase. This iteration allows further model refining by altering 
hyperparameters, changing the network topology, or experimenting with other training 
procedures.

Following this iterative process, the proposed workflow ensures a systematic approach 
to designing, training, and assessing network models for a specific task. MATLAB 2021a 
environment was used with supported hardware that included a 2.50GHz Intel® CoreTM 
i5-10500H CPU and an NVIDIA GeForce RTX 3060 graphics processing unit to complete 
the overall experimental procedure.

Dataset Preparation

The dataset utilized in this experiment was obtained from the Kaggle database (https://www.
kaggle.com/datasets/drizasazanitaisa/dyslexia-handwriting-dataset), which consists of an 
established image dataset (Rosli et al., 2021). The dataset preparation process establishes 
the image dataset and aims to ensure that it is suitable for execution as an input in deep 
neural networks. It consists of two key parts: preprocessing all images and the dataset 
management process.

Preprocess Image 

The preprocessing steps collectively prepare the image data for training deep learning 
models, making the input more suitable for the classification task. Figure 2 illustrates the 
preprocessing stages, which include binarization, inversed black-and-white pixels, image 
resizing, noise injection, and rotation.

Initially, the image undergoes binarization, where pixel values are simplified to binary 
form based on a threshold. The image’s colors are then inverted, changing white pixels into 
black and vice versa. The image is then resized to 32 × 32 dimensions to meet standardized 
input sizes. Controlled amounts of random noise are injected to enhance the model’s 
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robustness by exposing it to variations 
in real-world data. Finally, the image 
undergoes rotation to a specified degree 
to diversify the training dataset, ensuring 
the model’s ability to handle variations in 
object orientation. These preprocessing 
stages work together to produce a refined 
and optimal input for further analysis and 
CNN model training (Rosli et al., 2021).

Dataset Management

This procedure organizes all preprocessed 
data images into specified classes before 

Figure 2. Preprocessing steps
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Inversed black-white color

Resized into 3 x 3 dimension

Noise injection

Rotation

they are entered into the network models. After completing the preprocessing activities, 
the established collection now contains 267,930 images, which include noise injection 
and rotated images. Therefore, each class has a balanced representation of the collection. 
The dataset input size is 32 × 32 pixels, encompassing rows and columns for dysgraphia 
and normal class. Table 2 presents the percentage proportion and numerical distribution 
of the training and testing datasets. About 85% of the dataset is used for training, and the 
remaining 15% is used for testing. However, 30% of the training dataset was randomly 
selected for the validation phase. 

Table 2
Dataset division of training and testing

Dataset Category Number of Images Percentage
Training 228816 85%
Testing 39114 15%

Network Model Design

Network Design

As illustrated in Figure 3, the overall network construction consists of an extraction network 
and a classification network. This experiment used two types of new layer structures for 
extraction networks, as shown in Figures 4 and 5. The following classification network 
employed a fully connected Softmax layer and yielded the predicted output class at the 
end of the network.

Figure 4 depicts the architecture of SN, which includes three convolutional layers, batch 
normalization, and ReLu as an activation function. Before proceeding to the classification 
network, each layer block finishes with the max pooling layer.
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Figure 5 demonstrates the DAGN layer architecture, which includes three convolutional 
layers (Conv), batch normalization (BaN), and activation function using ReLu. A skip 
connection is a network connection between the two layers that enables the gradient to move 
directly from the output to the input levels. During the forward and backward propagation 
training phases, this connection allows the network to bypass one or more layers. Mixing 
inputs from distinct layers requires an additional layer to complete the acyclic graph. By 

Figure 3. Overall network construction for Sequential Network and Directed Acyclic Graph Network

Figure 4. A new structure layer of Sequential Network architecture
Note. ConV = Convolutional layers, BaN = Batch normalization

Figure 5. A new structure layer of Directed Acyclic Graph Network architecture
Note. ConV = Convolutional layers, BaN = Batch normalization
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using an average pooling prior classification 
network, the average of the items identified 
in the filtered area of the feature map is 
determined.

For each network, the neural network 
model parameters for dysgraphia screening 
using handwriting images were independently 

Table 3
Parameter set up for Sequential Network (SN) and 
Directed Acyclic Graph Network model (DAGN)

Parameter SN DAGN
Optimizer SGDM SGDM
Learning Rate 0.001 0.01
Number of epochs 8 8

adjusted, as presented in Table 3. Both networks used the “sgdm” optimizer (Stochastic 
Gradient Descent with Momentum). The learning rate was set to 0.001 for SN and 0.01 for 
DAGN, which defines the step size for minimizing the loss. It implies that the model iterates 
and adjusts the weights each time. The model is trained for eight epochs, which means the 
network processes the dataset eight times during training. Each epoch has 1251 iterations, 
with the weights adjusted every 30 iterations. The optimizer, learning rate, epochs, and 
iterations per epoch are all factors that affect the performance and training duration of the 
neural network model used to classify handwriting images as dyslexic or normal.

Train and Validate Model

Training and validating a deep learning network model require a structured process to ensure 
the model learns meaningful representations from the input data. During the training phase, 
the CNN model is given a labeled dataset and iteratively modifies its internal parameters 
to reduce the discrepancy between predicted and actual outputs (Alzubaidi et al., 2021). 
This optimization is often accomplished through backpropagation and gradient descent. 
Meanwhile, the validation phase is important for determining the model’s performance on 
unseen data. In this phase, the model’s generalization skills are evaluated using a separate 
dataset not used during training. To avoid overfitting, fine-tune the model based on the 
validation results and repeat this iterative procedure until the model achieves satisfactory 
performance on both the training and validation datasets. 

Network Analysis

Performance evaluation assesses the neural network model’s capacity to detect potential 
dysgraphia and normal handwriting. This experiment uses performance evaluation to track 
and measure how the CNN model performs during training and testing. In this phase, network 
analysis involves analyzing the network’s performance based on the testing results obtained 
from untested data and subsequent to the comparison of both SN and DAGN performances. 

Network Testing

The testing phase evaluates the model’s overall performance on a completely independent 
dataset, finalizing its capability to make accurate predictions in real-world scenarios. This 
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process ensures that the CNN-based model is robust and accurate and can generalize 
well beyond the training data. The binary class confusion matrix was used to evaluate the 
effectiveness of each model in achieving network testing. The performance was assessed 
using accuracy, precision, recall, and the F1-score. All computations are based on a binary 
confusion matrix (Sokolova & Lapalme, 2009) to identify potential dysgraphia and normal 
handwriting.

Performance Comparison

The final measurement involves comparing SN and DAGN performances according to the 
best achievement of accuracy, precision, recall, and f1-score as harmonic values to validate 
the performance measurement. 

RESULTS

The classification performance of both SN and DAGN on potential dysgraphia handwriting 
images is analyzed using the confusion matrix and loss graph. Additionally, the extraction 
of layer networks influences classification performance through the result of accuracy, 
precision, recall, F1-score and loss obtained were analyzed. It also discusses how the 
conclusions may improve dysgraphia detection methods based on deep learning, especially 
Convolutional Neural Network (CNN).

The results shown in Figure 6 emphasize the classification performance of two network 
models: SN and DAGN. The SN model attained an impressive training accuracy of 94.27%, 

Figure 6. Accuracy performance for Sequential 
Network (SN) and Directed Acyclic Graph Network 
(DAGN)
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but its validation accuracy was slightly 
lower, and its testing accuracy decreased 
to 86%. In contrast, the DAGN model 
outperformed all other models in all phases. 
It outperformed the SN model in terms of 
training accuracy, achieving 96.17%, and 
demonstrated improved generalization, with 
a validation accuracy of 95.2%. Notably, 
the DAGN model exceeded the SN model 
in testing accuracy, scoring 87.75%. These 
data highlight the DAGN model’s improved 
performance and generalization capability 
in dysgraphia classification compared to 
the SN model. The finding shows that 
the DAGN model outperforms the SN 
model in terms of accuracy during training, 
validation, and testing. The finding shows 



2024 Pertanika J. Sci. & Technol. 32 (5): 2013 - 2032 (2024)

Siti Azura Ramlan, Iza Sazanita Isa, Muhammad Khusairi Osman, Ahmad Puad Ismail and Zainal Hisham Che Soh

that the DAGN model is more capable of learning and adapting properly to new unseen 
data. The higher accuracy achieved by the DAGN model on the testing dataset shows that 
it is more reliable and effective than the SN model in accurately classifying handwriting 
images. The DAGN model took 117 minutes and 9 seconds to train, while the SN model 
took somewhat longer at 121 minutes and 49 seconds. Although the SN model finished 
significantly faster, the time difference between the two models is relatively small.

The results presented in Figure 7 show the training and validation accuracies across 
multiple epochs. The training accuracy of the SN model begins at 46.09% at epoch 0 and 
steadily increases over consecutive epochs, reaching the highest at 94.53% at epoch 4. In 
subsequent epochs, it varied with slight decreases and increases. Similarly, the validation 
accuracy for the SN model began at 48.17% in epoch 0 and reached a maximum of 
93.67% at epoch 8. Overall, the SN model improved training and validation accuracy over 
the length of the epochs. On the contrary, the DAGN model has better training accuracy 
across most epochs. It outperformed the SN model at 60.94% in epoch 0 and maintained 
relatively good training accuracy. At epoch 8, the highest training accuracy was obtained, 
98.44%. Similarly, the DAGN model’s validation accuracy began at 54.77% at epoch 0 
and steadily rose to 95.20% at epoch 8. In terms of training and validation accuracy, the 
DAGN model consistently outperformed the SN model. The findings revealed that the 
DAGN model exhibited enhanced predictive capabilities and improved accuracy as the 
epoch progressed. These findings highlight the importance of network architecture, with 
the DAGN model’s structure contributing to its higher performance over the SN model. 
The structure of layers, activation functions, or connection patterns in the DAGN model 
may allow it to extract relevant features and produce better predictions.

The loss graph for training and validation progress is shown in Figure 8. The training 
loss for the SN model began at 0.91 at epoch 0 and gradually reduced over subsequent 

Figure 7. Accuracy performance graph for training and validation
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epochs. It reached the lowest at 0.15 at epoch 4 and continued relatively low in subsequent 
epochs. Similarly, the validation loss for the SN model began at 0.87 at epoch 0 and 
decreased across the epochs, reaching a low of 0.16 at epoch 8. Over the training period, 
the SN model showed a reduction in training and validation losses. At the instance of the 
DAGN model, the training loss begins at 0.86 at epoch 0 and decreases progressively over 
the epochs. The validation loss for the DAGN model started at 1.03 at epoch 0 and rapidly 
reduced in the following epochs, reaching 0.13 at epoch 8. The DAGN model consistently 
reduced training and validation losses throughout the training process. The decreasing 
trend in losses suggests that both models are learning and adjusting their parameters to 
better capture the patterns in the data. These findings highlight the importance of network 
architecture and emphasize the potential benefits of utilizing the DAGN model for 
classifying handwriting images.

The data shown in Figure 9 compares the predicted classifications for DAGN to the 
actual classifications for two categories, namely dysgraphia and non-dysgraphia. In the first 
actual row, 42.0% (16,416) of the handwriting cases were correctly identified as dysgraphia, 
whereas 4.2% (1,652) cases of the actual dysgraphia handwriting were wrongly classified 
as non-dysgraphia which indicates a false negative rate. The second actual row shows that 
8.0% (3,141) of the handwriting cases that were actually non-dysgraphia were wrongly 
labeled as dysgraphia, indicating a false positive rate. Meanwhile, 45.8 % (17,90) of cases 
were correctly classified as non-dysgraphia.

The testing confusion matrix of SN is depicted in Figure 10, and it was discovered that 
43.9% (17,152) of the occurrences that were dysgraphia were accurately recognized as such. 
However, 7.8% (3,070) of those with dysgraphia were misclassified as non-dysgraphia. 
The second row shows that 6.1% (2,405) of the cases that were actually non-dysgraphia 
were misclassified as dysgraphia. However, 42.2% (16,48) of the truly non-dysgraphia 
examples were appropriately classified as such. Generally, the model successfully classifies 

Figure 8. Loss graph for training and validation
Note. SN = Sequential Network, DAGN = Directed Acyclic Graph Network
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dysgraphia with a higher rate of true predictions than misclassifications. However, more 
research is required to lower the false negative rate and ensure that all dysgraphia cases 
are correctly diagnosed. Similarly, with a higher percentage of accurate classifications, the 
model’s performance in detecting non-dysgraphia cases is beneficial. 

A more comprehensive insight into the model’s performance is offered in Table 4 
through additional analysis, including precision, recall, and F1-score. Precision for the 
dysgraphia class is high in training, validation, and testing for both SN and DAGN. The 
DAGN consistently outperforms the SN in terms of precision. During validation, the highest 
precision for SN was 92.90%, whereas DAGN yielded the highest precision with 97.07% 
accuracy. The recall scores for the dysgraphia class, SN, and DAGN are comparable, with 
SN having slightly higher recall values during validation and testing. The highest recall 
for DAGN is achieved during testing with 91.55% accuracy. For the dysgraphia class, the 
F1 scores for SN and DAGN are relatively close, with both models showing comparable 
performance during training, validation, and testing. During testing, the difference in 
performance between the SN and DAGN scores is only 0.12%.

For the non-dysgraphia class, the precision performance revealed that SN consistently 
outperforms DAGN at all training, validation, and testing. The maximum precision for 
SN was observed during testing, with 87.27% accuracy. Meanwhile, the recall score for 
DAGN increased at every stage of training, validation, and testing. The non-dysgraphia 
class achieved a high accuracy during testing, which was 7.15% greater than the SN class. 
SN and DAGN have similar F1 scores in the dysgraphia class and obtained the results with 
DAGN reaching slightly higher accuracy. DAGN achieved the greatest F1 score during 
testing and demonstrated 88.20% accuracy.

Figure 9. Testing confusion matrix of Directed 
Acyclic Graph Network
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The results show that SN and DAGN performance changes across the dysgraphia 
and non-dysgraphia classes. The DAGN model demonstrated exceptional performance 
throughout validation and testing, with accuracy rates of 95.2% and 87.75%, respectively. 
In contrast, the SN model obtained a meager 93.27% in validation and 86.0% in testing. 
Significantly superior in testing, the DAGN model exhibited a 1.75% improvement over 
the SN model. DAGN has higher precision and recall values in all classes, demonstrating a 
superior ability to classify handwriting. However, in terms of precision, SN outperforms the 
non-dysgraphia class. Both models have similar F1 scores, but the DAGN model performs 
better, with 86.36% and 88.20% accuracy in both classes.

DISCUSSION

The investigation results of this study demonstrate that the DAGN outperforms the SN in 
terms of accuracy and F1-score value. This finding indicates that the DAGN of extraction 
layer architecture is better suited for offline handwriting images in classifying dysgraphia 
and non-dysgraphia. The higher accuracy achieved by DAGN implies it is more effective 
at capturing and learning the underlying patterns and features than the SN.

The loss and training progress graphs presented in Figures 6 and 7 further support the 
superior performance of DAGN. The graphs clearly show that the DAGN model displays 
a faster convergence rate and lower training loss compared to the SN. It indicates that 
the DAGN layer construction is more efficient in optimizing the model parameters and 
minimizing the difference between predicted and actual classification. The consistent 
improvement in the loss and training progress throughout the training process indicates 
the efficiency and consistency of the DAGN model.

The testing confusion matrix in Figures 8 and 9 provides valuable details on the 
accuracy of predictions presented by both models. The confusion matrix demonstrates 
the DAGN’s lower error rate in predicting target labels, highlighting its more accurate 
performance when compared to the SN. The confusion matrix demonstrates that the DAGN 

Table 4
Precision, recall and F1-score

Type of 
Network

Training (%) Validation (%) Testing (%)

Dysgraphia Non-
Dysgraphia Dysgraphia Non-

Dysgraphia Dysgraphia Non-
Dysgraphia

Precision SN 93.39 95.18 92.90 94.63 84.82 87.27
DAGN 97.91 94.55 97.07 93.48 90.86 85.08

Recall SN 95.27 93.26 94.74 92.76 87.70 84.30
DAGN 94.35 97.99 93.22 97.18 83.94 91.55

F1 score SN 94.32 94.09 93.81 93.56 86.24 85.29
DAGN 95.96 96.24 94.92 95.29 86.36 88.20

Note. SN = Sequential Network, DAGN = Directed Acyclic Graph Network
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model has a higher accuracy in correctly classifying the target labels, with fewer instances 
of misclassification between different classes. 

Furthermore, the precision, recall, and F1 scores indicated in Table 4 prove that DAGN 
outperformed SN. These metrics comprehensively evaluate the model’s performance by 
considering true positives, false positives, and false negatives. Precision can be defined as 
true positives (actual dysgraphia class predicted as dysgraphia) proportion to all handwriting 
in actual dysgraphia class. Therefore, precision scores demonstrate the DAGN model’s 
ability to correctly identify dysgraphia handwriting as actual instances in the dysgraphia 
class. Meanwhile, the recall score demonstrates that the DAGN model can effectively 
recognize each class from the overall handwriting input images. As a result, the F1 score 
presented the harmonic mean value of precision and recall score, indicating that DAGN 
is greater than SN for both classes.  

Overall, our findings highlight the superiority of the DAGN architecture over the SN 
in terms of accuracy, loss optimization, prediction accuracy, and comprehensive evaluation 
metrics. The DAGN model’s ability to capture complex patterns, faster convergence rate, 
and lower error rate in predicting the target labels indicate its robustness and efficacy. It is 
supported by the DAGN structure, which enables skip connections in layer construction. 
Skip connections enable CNNs to bypass some layers and connect directly to deeper or 
shallower ones (Mohammed et al., 2022). It could help to differentiate patterns from the 
image data. Additionally, skip connections can help address the problem of vanishing 
gradients by offering alternate paths for the gradients to flow (Qiao et al., 2018). 
Furthermore, they can make it easier and faster to train deeper networks with greater 
expressive capacity and the ability to extract more features from data images. These 
results contribute to the growing evidence supporting the advantages of utilizing DAGN 
architectures in similar problem domains. Future research should focus on exploring 
the underlying reasons behind the improved performance of DAGN and investigate its 
applicability to other domains and datasets.

Based on the investigation, several studies have been compared to the proposed study, 
which provides excellent results with more than 80% testing accuracy, as depicted in Table 
5. According to Table 5, the proposed CNN has 87.75% testing accuracy for a simple DAG 
construction network with automated feature extraction and 86.0% for a simple sequential 
network. In a study by Devi and Kavya (2023), hand-crafted feature extraction was executed 
using the Kekre-Discrete Cosine Transform method and classified using deep transfer 
learning for offline handwriting, which yielded the highest performance at 99.75% accuracy. 
Hand-crafted feature extraction is not competent in representing the overall performance 
because it is usually not robust, and the computational requirement is high, especially for 
high-dimension images. The performance of the proposed CNN-based model does not show 
the highest percentage of accuracy. However, this proposed CNN is the simplest network, 
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and it has been successfully executed with automated feature extraction and only requires 
minimal time to complete the training and testing. However, the proposed CNN-based 
model demonstrated noteworthy performance, which is substantial enough to warrant its 
integration with another model in the future.  

CONCLUSION

This paper focused on the classification performance of SN and DAGN on potential 
dysgraphia handwriting images and compared both network models. According to the 
experimental results, this study demonstrates that DAGN can significantly improve 
classification performance on dysgraphia screening using children’s handwriting products. 
This finding is consistent with previous research that found skip connections in DAGN 
improved classification performance by addressing the issue of vanishing gradients during 
backpropagation. In addition, skip connections provide a different route that acts as a 
shortcut, preventing information loss and distortion across the network. Hence, DAGN has 
been proven to be a useful tool for image classification tasks, as it uses skip connections to 
improve training speed, accuracy, and stability. Besides, this improved performance may 
be contributed by the DAGN model’s layer structure, activation functions, or connection 
patterns, which enable more efficient feature extraction and representation. The proposed 
CNN-based network model shows significant performance in children’s handwriting 
classification and could be a considerable network structure to be integrated with another 
model to assist the dysgraphia detection process. 

The performance in this study is based on a specific dataset, limiting the generalizability 
of the models. Additional validation on larger and more diverse data sets is required to 
establish the validity of the findings. Future research could investigate the interpretability of 

Table 5
State-of-the-art performance comparison

Author Model Input Domain Performance
Masood et al., 2023 CNN-LSTM Random Forest Parkinson handwriting 92.6%
Devi & Kavya, 
2023

Kekre-Discrete Cosine Transform with 
Deep Transfer Learning (K-DCT-DTL)

Offline handwriting 99.75%

Vilasini et al., 2022 Convolutional Neural Networks (CNN) 
and Vision Transformers (ViT)

Offline handwriting 
(letter form)

79.47% (CNN)
86.22% (ViT)

Ghouse et al., 2022 Non-Discrimination Regularization in 
Rotational Region Convolutional Neural 
Network (NDR-R2CNN)

Offline handwriting 98.2%

Zolna et al., 2019 Recurrent Neural Network model 
(RNN).

Online handwriting >90% diagnosed 
as dysgraphia

Proposed CNN Sequential CNN (three Convolutional 
layers (SN)

Offline handwriting 86%

DAG network Offline handwriting 87.75%
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model predictions to comprehend the underlying characteristics and patterns that contribute 
to dysgraphia detection in handwriting. Incorporating additional features and conducting 
comparative analyses with other advanced architectures or traditional algorithms would 
extend dysgraphia detection research while improving model precision and reliability. 
This study shows that using DAGN as a promising strategy for identifying dysgraphia-
related handwriting symptoms has the potential to improve understanding of dysgraphia 
and stimulate the development of improved tools and interventions for people with this 
learning difference.
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